3.3.38 \(\int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [238]

Optimal. Leaf size=119 \[ \frac {64 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*a*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+64/15*a^3*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*
x+c))^(1/2)+16/15*a^2*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {3894, 3889} \begin {gather*} \frac {64 a^3 \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

(64*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (16*a^2*Sqrt[a + a*Sec[c + d*x]]*Si
n[c + d*x])/(15*d*Sqrt[Sec[c + d*x]]) + (2*a*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3894

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*m)), x] + Dist[b*((2*m - 1)/(d*m)), Int[(a + b
*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0
] && EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (8 a) \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{15} \left (32 a^2\right ) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {64 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.33, size = 64, normalized size = 0.54 \begin {gather*} \frac {a^2 (89+28 \cos (c+d x)+3 \cos (2 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{15 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

(a^2*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(15*d*Sqrt[Sec[c
 + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 85, normalized size = 0.71

method result size
default \(-\frac {2 \left (3 \left (\cos ^{3}\left (d x +c \right )\right )+11 \left (\cos ^{2}\left (d x +c \right )\right )+29 \cos \left (d x +c \right )-43\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}} a^{2}}{15 d \sin \left (d x +c \right )}\) \(85\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*(3*cos(d*x+c)^3+11*cos(d*x+c)^2+29*cos(d*x+c)-43)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(1/
cos(d*x+c))^(5/2)/sin(d*x+c)*a^2

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 60, normalized size = 0.50 \begin {gather*} \frac {{\left (3 \, \sqrt {2} a^{2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 25 \, \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 150 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{30 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/30*(3*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) + 25*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 150*sqrt(2)*a^2*sin(1/2*d*x +
 1/2*c))*sqrt(a)/d

________________________________________________________________________________________

Fricas [A]
time = 2.46, size = 87, normalized size = 0.73 \begin {gather*} \frac {2 \, {\left (3 \, a^{2} \cos \left (d x + c\right )^{3} + 14 \, a^{2} \cos \left (d x + c\right )^{2} + 43 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/15*(3*a^2*cos(d*x + c)^3 + 14*a^2*cos(d*x + c)^2 + 43*a^2*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x +
c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(5/2)/sec(d*x+c)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.83, size = 85, normalized size = 0.71 \begin {gather*} \frac {a^2\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (175\,\sin \left (c+d\,x\right )+28\,\sin \left (2\,c+2\,d\,x\right )+3\,\sin \left (3\,c+3\,d\,x\right )\right )}{30\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(5/2),x)

[Out]

(a^2*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(175*sin(c + d*x) + 28*si
n(2*c + 2*d*x) + 3*sin(3*c + 3*d*x)))/(30*d*(cos(c + d*x) + 1))

________________________________________________________________________________________